일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
Tags
- WBP
- UE5
- 생성모델
- dl
- Generative Model
- CNN
- Font Generation
- Diffusion
- 언리얼엔진
- multimodal
- Unreal Engine
- 딥러닝
- userwidget
- GAN
- motion matching
- 폰트생성
- 모션매칭
- Stat110
- 디퓨전모델
- cv
- NLP
- Few-shot generation
- deep learning
- BERT
- ue5.4
- WinAPI
- animation retargeting
- RNN
- 오블완
- ddpm
Archives
- Today
- Total
목록Feature Engineering (1)
Deeper Learning

import numpy as np import pandas as pd from sklearn.datasets import fetch_california_housing x,y = fetch_california_housing(return_X_y=True) k=fetch_california_housing() k.feature_names print(x.shape) print(y.shape) np.random.seed(1127) shuffle_ind = np.random.permutation(x.shape[0]) x=x[shuffle_ind,:] y=y[shuffle_ind] x_train = x[:int(x.shape[0]*0.8),:] y_train = y[:int(x.shape[0]*0.8)] x_test ..
AI/Machine Learning & Data Science
2020. 11. 27. 22:56