일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
- GAN
- BERT
- UE5
- WBP
- 언리얼엔진
- 생성모델
- motion matching
- Generative Model
- 모션매칭
- NLP
- 디퓨전모델
- dl
- Diffusion
- ddpm
- CNN
- multimodal
- deep learning
- Font Generation
- 폰트생성
- 딥러닝
- ue5.4
- animation retargeting
- Unreal Engine
- WinAPI
- RNN
- Stat110
- userwidget
- cv
- Few-shot generation
- 오블완
- Today
- Total
목록GAN (4)
Deeper Learning
Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, Universite de Montreal (2014.06) Abstract 데이터 분포를 파악하는 generative model $G$와 sample이 training data에서 온 것인지 생성된 것인지 판별하는 discriminator $D$를 적대적인 프로세스로 동시에 학습하는 생성모델 프레임워크를 제시 $G$는 $D$가 제대로 판별하지 못하도록 학습되는 minimax two-player game $G$와 $D$는 MLP로 구성하였으며 역전파를 통해 학습이 가능한 모델 Ma..
Seiya Matsuda, Akisato Kimura, Seiichi Uchida, Kyushu Univ., NTT, (2022.03) Abstract impression labeling 된 dataset을 사용하여 specific impression fonts를 GAN으로 생성하는 것이 목표 Main difficulty font impression은 애매 특정 impression label이 없다고 그 폰트가 해당 impression에 해당하지 않는 것이 아님 (dataset이 불안정) Key Idea co-occurrence-based missing label estimate impression label space compressor MyFonts 데이터셋은 전문가 + 비전문가가 tagging 한 ..
Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, Timo Aila NVIDIA. (2019.12) Abstract StyleGAN은 unconditional data-driven 이미지 생성 SOTA 달성 모델 StyleGAN의 특징적인 아티팩트를 분석하고 이를 해결하기 위한 아키텍처와 학습방법을 제안 generator의 normalization을 새로 디자인, progressive growing을 재고(resolution을 증가시키며 학습하는 것), generator regularization을 통해 latent code에서 image로의 매핑을 개선 path length regularizer는 이미지 퀄리티를 개선할..
DCGAN GAN(Generative Adversarial Networks)은 Generator와 Discriminator 2개의 모델을 사용하여 실제 데이터와 비슷한 데이터를 생성하는 생성 모델이다. Random 한 Noise vector를 input으로 사용하는 Generator는 실제 데이터와 같은 shape의 데이터를 output으로 한다. Discriminator는 실제 데이터와, Generator가 생성한 데이터를 구별해내는 모델로 Binary Classification 모델이다. DCGAN은 Dense Net이 아닌 Convolutional NN를 사용하는 모델이다. DCGAN structure Generator는 위와 같은 구조로 위의 예시는 100d의 noise vector는 Transp..