일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
- GAN
- UE5
- ue5.4
- dl
- 폰트생성
- WinAPI
- Unreal Engine
- userwidget
- 디퓨전모델
- Stat110
- 딥러닝
- 모션매칭
- Diffusion
- BERT
- cv
- Few-shot generation
- ddpm
- motion matching
- 오블완
- NLP
- 언리얼엔진
- Font Generation
- animation retargeting
- Generative Model
- multimodal
- 생성모델
- WBP
- CNN
- RNN
- deep learning
- Today
- Total
목록언어모델 (2)
Deeper Learning

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu [Google] (2019.10) Abstract Transfer learning은 NLP에서 강력한 기술로 부상하였다 모든 text 기반 language 문제를 text-to-text 형식으로 바꾸는 unified framework을 제시하여 NLP에서의 transfer learning에 대해 탐구 논문의 체계적인 연구는 pre-training objectives, 아키텍처, unlabeled 데이터셋, transfer approach 등 요인들을 여러 language understandi..

Self-Supervised Pre-Training Models 문서 분류, 감성 분석, 질의응답, 문장 유사성 파악, 원문함의 등 과제는 각각 주어진 과제에 알맞은 처리가 완료된 데이터가 필요하다. 미분류 corpus의 경우 매우 많으나 특정 목적을 위해 Labeling, 전처리가 완료된 데이터는 현저히 부족하다. 미분류 corpus를 사용하여 언어 모델을 학습시키고 특정 목적에 맞게 fine-tuning 하는 것으로 이를 어느 정도 해결할 수 있다. 비지도 학습인 미분류 corpus로 학습한 언어모델과 이를 supervised fine-tuning 하는 Self-supervised pre-training을 통해 언어이해(NLU)를 달성하는 것이 GPT의 목적이다. GPT-1 GPT-1은 OpenAI에..